
Article 
 

pubs.acs.org/IECR 

 
 
 

Optimization of Heat-Integrated Crude Oil Distillation Systems. 
Part I: The Distillation Model  
Lluvia M. Ochoa-Estopier and Megan Jobson* 
 
Centre for Process Integration, School of Chemical Engineering and Analytical Science, The University of Manchester, 
Manchester, M13 9PL, U.K.  

*S Supporting Information  
 

ABSTRACT: This work presents a methodology for optimizing heat-integrated crude oil distillation systems. Part I of this three-
part series presents a modeling strategy where artificial neural networks are used to represent the distillation process. Part II 
presents a new methodology to retrofit heat exchanger networks (HENs) and Part III presents the application of this distillation 
model to perform operational optimization of the crude oil distillation unit while proposing retrofit modifications to the associated 
HEN. Independent variables of the distillation model include flow rates of products, stripping steam, pump-around specifications, 
and furnace exit temperature. Dependent variables include those related to product quality, and temperatures, duties, and heat 
capacities of process streams involved in heat integration. The resulting neural network model is able to overcome convergence 
problems presented by rigorous or simplified models. Simulation time is significantly improved using neural networks, compared 
to rigorous models, with practically no detriment to model accuracy. 

 
 
1. INTRODUCTION  
Crude oil distillation is a very important step in the refining 
process. The refining process begins with distillation, where 
crude oil is separated into a series of fractions based on boiling 
ranges. These distillation products are further processed in 
downstream operations (e.g., hydrotreating, hydrocracking, 
catalytic reforming, fluidized catalytic cracking, etc.) before 
being blended into final products. Crude oil distillation systems 
typically consist of a preheat train, a flash unit or a 
prefractionator, an atmospheric distillation unit, and a vacuum 
distillation unit, as illustrated in Figure 1. The distillation units 
are configured as a main distillation column with side-strippers 
and intermediate coolers (i.e., pump-arounds or pump-backs). 
Crude oil first enters a set of heat exchangers (i.e., the preheat 
train) before entering the atmospheric distillation unit, where 
the crude oil is fractionated. The heaviest product stream from 
the atmospheric distillation unit, the atmospheric residue, is 
further separated in the vacuum distillation unit. A flash unit or 
a prefractionator may also be present upstream of the 
atmospheric distillation unit.  

Crude oil distillation is an energy-intensive process. It is 

reported3 that the energy consumed in the overall refining 
process is equivalent to between 7% and 15% of the crude oil 
processed, of which 35−45% is consumed by the atmospheric 
and vacuum distillation units. Heat integration is vital for an 
energy-efficient operation of the crude oil distillation process. 
Heat integration is achieved by exchanging heat between hot 
and cold process streams. The main cold process stream, the 
crude oil feed, is heated to an intermediate temperature by 
cooling distillation process streams, such as the pump-arounds 
and product streams. The crude oil then enters a furnace to reach 
the required processing temperature. Increasing energy 
recovery between process streams reduces fuel consumption in 
the furnace, thus operating costs. A flash unit or a  

 
 
prefractionator may be placed before the crude oil furnace, 
which can also help to reduce energy consumption.  

Increasing concerns related to carbon emissions and process 
economics, such as the rise in fuel prices, have motivated the 
implementation of grass-roots design, retrofit, and operational 
optimization projects aimed to improve the energy and 
separation performance of distillation systems. Operational 
optimization is more frequently implemented than retrofit, 
while grass-roots design projects are carried out least often. 
Methodologies for grass-roots design, retrofit, and operational 
optimization purposes have been developed. These design 
methodologies can either focus on the distillation process, the 
heat exchanger network, or the heat-integrated distillation 
system (i.e., distillation process and HEN). Considering the 
distillation process and HEN together allows interactions within 
the system to be exploited, increasing the chances of finding 
better designs, compared to considering the distillation process 

and HEN separately.4 
 

Early design procedures5,6 used simple mass and energy 
balances, guidelines, and empirical correlations to design 
distillation units. Over time, new computational tools have 
facilitated the development of design methodologies that 
employ optimization algorithms at some point of the design 
procedure. When the scope of these methodologies is the design 
of heat-integrated crude oil distillation systems, models for the 
crude oil distillation process and heat recovery network need to 
be considered in the optimization framework. This paper 

reviews crude oil distillation models, while Part II1 of this series 
discusses HEN design models.  
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Figure 1. Crude oil distillation system.  
 

Crude oil distillation models can be classified in three main 
categories: rigorous, simplified and statistical models.7 These 
models have been incorporated in approaches that consider 
grass-roots design, retrofit or operational optimization.  
Rigorous distillation models were used in the work of 
Liebmann et al.8 and Bagajewicz and Ji9,10 to design heat- 
integrated crude oil distillation units. Starting from initial column 
designs, their approaches use guidelines and composite curves or 
heat diagrams to propose modifications to the distillation units that 
increase energy recovery. Liebmann et al.8 focused on selecting the 
vaporization mechanism (stripping steam or reboiling), pump-
around duties, and degree of thermal coupling. Bagajewicz and 
Ji9,10 dealt with the placement and duties of pump-arounds for 
columns that process different types of crude oils. These design 
procedures8−10 are iterative; trial and error is required to achieve 
the final designs.  

Rigorous models have also been used to perform operational 
optimization of crude oil distillation units.11−14 However, no HEN 
details were considered in these methodologies. HEN details refer 
to the topology of the HEN (i.e., connections between heat 
exchanger units and stream splitters in the HEN), available heat 
transfer area of each unit, overall heat transfer coefficients, etc. Seo 
et al.11 optimized the feed stage location and pump-around duties 

to reduce operating and capital costs. Basak et al.12 developed a 
methodology to perform operational optimization to increase 
product revenue while reducing operating costs. Inamdar et al.13 
solved multiobjective design problems, such as maximizing total 
profit while minimizing energy costs. Optimization variables have 
included flow rates of products, pump-arounds and column reflux, 
and coil outlet temperature12,13 (furnace exit temperature). Al-

Mayyahi et al.14 performed multiobjective optimization to 

maximize net profits and minimize CO2 emissions. Crude oil 
blending fractions, stripping steam flow rates, and pump-around 
duties were considered as optimization variables.  

Chen4 used simplified models based on the Fenske− 
Underwood−Gilliland (FUG) method to perform grass-roots design, 
retrofit and operational optimization of crude oil distillation 
systems. In the work of Chen,4 structural variables of the 
distillation column (e.g., stage distribution, location of feed 

 
stage, and pump-arounds) and HEN details are taken into 
account. Simplified models based on the FUG method have 
the advantage of being more robust and converging faster 
than rigorous models. However, simplified models are also 
highly sensitive to initial guesses.  

Statistical models are extremely robust and are simpler than 
rigorous and simplified distillation models. Many approaches 
are available to develop statistical models; these include linear 
regression, polynomial regression, support vector regression, 
artificial neural networks (ANNs), etc. Liau et al.15 proposed a 
methodology to perform operational optimization of a 
distillation unit using ANN models. In their work, the ANN 
distillation model is regressed against plant measurements. 
Operational optimization is applied to increase the yields of 
diesel or kerosene products. No HEN details are considered in 
the approach of Liau et al.15 
 

Yao and Chu16 used a nonlinear regression method known as 
support vector regression to model crude oil distillation units. 
The distillation model was implemented into an optimization 
framework to find the operating conditions (e.g., pump-around 
specifications and flow rates of products and stripping steam) 
that maximize profits. Lopeź C. et al.17 regressed second-order 
polynomial functions to model a system of several crude oil 
distillation units. These models were used to perform 
operational optimization to maximize profits. Optimization 
variables comprised crude oil blending fractions, pump-around 
specifications, coil outlet temperature, and flow rates of products 
and stripping steam. Mass and energy balances were used in the 
work of Lopeź C. et al.17 to simulate the associated HEN and 
constrain the inlet and outlet temperatures of the heat 
exchangers.  

The artificial neural networks concept is the most widely used 
framework in recent years to develop nonlinear models.18 Many 
applications of ANN models in chemical engineering can been 
found; reviews of such applications are presented by Pirdashti et 
al.19 and Himmelblau.20 ANN models have been developed in the 
crude oil refining industry to simulate processing units or predict 
properties. Processing units represented by ANN models include 
crude oil distillation,15 fluid catalytic cracking,21,22 

hydrodesulfurization,22,23 catalytic 
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reforming,24 delayed coking 25 and hydrocracking. 26 ANN 
models have also been used to predict properties of crude 
oil27 and distillation side-draws;28 and to predict fouling in 
crude oil heat exchangers.29 

Models to be used for design and optimization of heat-integrated 
crude oil distillation systems need to be robust and accurate. 
Robustness refers here to the ability to find solutions to the model 
equations when their inputs are varied. Accuracy refers to the 
agreement between model predictions and the actual process 
represented by the model. Additionally, these models should 
provide sufficient information to represent the synergy between the 
distillation process and heat recovery network. In this context, 
ANN distillation models have the advantage of being extremely 

robust, compared to rigorous and simplified models.7 The accuracy 
of ANN models depends mainly on the data used for regression and 
the ability of the designer to correctly choose the ANN model 
parameters (e.g., type of regression function, number of neurons, 
etc.). If this is the case, ANN model predictions can be as or more 
consistent with the actual process as rigorous or simplified 
distillation models. Furthermore, ANN distillation models can be 
tailor-made to only include the variables that represent the 
separation and energy performance of the heat-integrated crude oil 
distillation system. Thus, it is possible to avoid the use of complex 
formulations found in rigorous and simplified models.  

This paper presents a methodology to develop ANN models 
for crude oil distillation units. The resulting distillation model 
considers operational variables such as coil outlet temperature, 
pump-around temperatures, and flow rates, and flow rates of 
distillation products and stripping steam. The ANN distillation 
model also calculates the information required to simulate the 
associated HEN. An example is presented to illustrate the 
accuracy and computational performance of the resulting ANN 
model and its application to optimize a distillation unit 
considering a simple heat recovery model (i.e., the grand 
composite curve).  

Part II1 of this series describes an approach to simulate and 
retrofit HENs considering network details (e.g., structure, heat 

transfer areas, etc.), while Part III2 presents the implementation of 
the resulting distillation and HEN models to optimize heat-
integrated crude oil distillation systems. The overall method-ology 
described in this series focuses on operational optimization of the 
distillation process, taking into account the necessary retrofit 
modifications to the associated HEN. 
 
2. ARTIFICIAL NEURAL NETWORKS  
Artificial neural networks are statistical modeling tools inspired by 
the structure of biological neural networks. ANNs relate the 
independent variables or inputs with the dependent variables or 
outputs through a set of neurons organized into layers. A neuron is 
the basic computing unit in the network. Even though many ANN 
models are similar to established statistical models, the terminology 
used to describe ANNs is very different to that used in statistical 

modeling. Sarle30 provides a comparison between ANN and 
statistical modeling terminology.  

Many ANN structures or architectures can be found in the 
literature.31 Feed-forward networks are the most commonly 
used network arrangements and are the ones used in this 
work. Figure 2 illustrates a feed-forward artificial neural 
network consisting of two layers, namely a hidden layer and 
an output layer.  

Each layer comprises one or more neurons, with their 
corresponding transfer f unctions. Feed-forward networks can 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Structure of a feed-forward neural network.33 
 
 
contain more than one hidden layer, but the most typically used 
networks consist of only one hidden layer. It is found30,32 that  
networks with one or more hidden layers are universal 
approximators, that is, they are able to represent any function to any 
desired degree of accuracy. This work employs networks with two 
hidden layers and one output layer. Equations 1 and 2 represent the 
feed-forward network depicted in Figure 2: 
 

a = f1 (W1x + b1) (1)

y = f 2 (W 2 a + b2) (2)
 
where x is the vector of independent variables, and a and y 
are the output vectors of the hidden and output layers, 
respectively. W is the matrix of weights, and b is the vector 
of biases. Superscripts 1 and 2 indicate the hidden and output 
layers, respectively. Transfer function f1 is a hyperbolic 
tangent function while f 2 is an identity function (i.e., g(x) = 
x). This selection of transfer functions is suitable for data 
fitting, while using hyperbolic tangent functions in f1 and f 2 
is suitable for pattern recognition.33 
 

The weights and biases required to calculate the outputs 
are determined by a training algorithm, which is an 
algorithm that regresses the model equations against a set of 
samples or targets. The most common training algorithm is 
called backpropagation and is the one used in this work. This 
type of training algorithm minimizes the mean squared 
errors between model predictions and their targets using a 
gradient descent optimization method:34 
 

 
1 

N  

F = ∑ (ti − yi)
2  

 

(3) 
N

 i= 1 

where t is the vector of targets and N is the number of 
observations used to train the model.  

The neural network modeling process involves the following 
steps: (a) data collection, (b) data processing, (c) model 

selection, (d) training and validation.33 Data collection is vital 
to create accurate models, since samples are the only source of 
information used to represent the process being modeled. 
Neural networks are not able to accurately extrapolate beyond 
the upper and lower limits of the data set used for training. 
Therefore, it is important that the samples cover the range of 
input values for which the network will be used. Data 
processing, particularly normalization, is applied in this work to 
facilitate the training process.  

Model selection refers to specifying the structure of the 
neural network (i.e., number of layers, neurons, and choice of 
transfer functions). It is reported35 that networks with more 
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than two hidden layers generally do not perform better, in 
terms of accuracy, than networks with fewer hidden layers. 
Furthermore, it becomes more difficult to train the network 
as the number of layers and neurons increases.33 
 

There are no universally valid guidelines to choose the 
number of neurons in a neural network. Some authors suggest  
specifying the number of neurons depending on the sizes of the 
input and output vectors,36,37 or as a fraction of the number of 
samples used for training.38 Methodologies to automatically 
determine the ANN structure have also been developed. These 
methodologies include pruning and growing the networks,37,39,40 
 

and modifying the ANN structure using genetic algorithms.41,42 
Training is the process of calculating the weights and biases of the 

ANN equations using an optimization algorithm. The training 
algorithm employed in this work divides the data into three sets, 
namely training, validation and test sets. The training set is used 

to calculate the weights and biases, while the validation set 
prevents overfitting of the network. The test set is 

used after training to validate the resulting model. 
 
3. DISTILLATION MODELING APPROACH 
 
A modeling framework using neural networks is proposed in 
this work to facilitate optimization of heat-integrated crude 
oil distillation systems. This modeling framework can also 
be applied to simple distillation columns.  

3.1. Data Collection and Processing. Data collection is 
the first step of the neural network design process. The inputs 
are selected in this work as variables that can be manipulated 
during operation and that impact on heat recovery and product 
revenue. Thus, the inputs of the ANN model consist of flow 
rates of distillation products and stripping steam, coil outlet 
temperature, and pump-around specifications. Other variables 
can also be included, such as feed flow rate or crude oil bending 
ratio. The outputs of the ANN model include the variables 
needed to evaluate the objective function and constraints. In this 
work, the outputs comprise variables related to product quality 
(e.g., true boiling point temperatures and flow rates), to column 
flooding conditions, and to the simulation of the heat exchanger 
network, in particular temperatures, enthalpies, and heat 
capacities of process streams passing through the heat 
exchanger network.  

Samples to build statistical models can be obtained from 
plant measurements15 or from other models.16,17 Plant  
measurements often present measurement errors and process 
variability over time, which need to be accounted for by 
processing the data. Furthermore, models applied for 
optimization purposes need to include scenarios that may 
differ from current and past operation. Models regressed with 
plant measurements can fail to represent these new operating 
scenarios.  

One way to overcome these limitations is using samples from 
rigorous simulations to build the ANN distillation model. Even 
though this approach involves solving the highly nonlinear 
system of equations repeatedly to obtain the samples, the 
resulting ANN model is simple, accurate, and extremely robust. 
These model characteristics are desirable for implementation in 
optimization. In this work, rigorous models embedded in the 

commercial simulation package Aspen HYSYS (V7.3)43 were 
used to obtain the samples.  

The sampling method selected in this work is the Latin 
Hypercube Sampling (LHS) method. Other types of sampling 
methods are also available, such as Monte Carlo sampling and 

Hammersley sequence sampling.44 LHS is a stratified sampling 

 
method that can be applied to multiple variables.45 Consider a 
set of variables x1,x2,xk,...,xK for which N samples need to be 
created. The range of each variable is divided into N equal 
intervals. Then, one value from each interval is randomly  
selected. For each sample (i = 1,2,...,N), the values of xk are determined 
by eq 4:46 
 

−1  i − 1 + ξ   
     

x
k , i 

=
 
P

N   (4)
where ξ is a random variable such that ξ ∈ [0,1] and is different 
for each value i of variable k. P is the cumulative probability 
distribution of xk. Equation 4 produces sample values xk,i 
scaled to the interval [0,1]. The N values obtained for variable 
x1 are then paired at random with each N values of variables 
x2,xk,...,xK.  

The LHS method is applied to the inputs of the ANN model (i.e., 
flow rates of products and stripping steam, coil outlet temperature, 
and pump-around specifications) to obtain the sampling plan. The 
samples were obtained through rigorous simulations in Aspen 
HYSYS (V7.3), while the distillation model was developed using 

the Artif icial Neural Network Toolbox in MATLAB.47 An 
automation code was developed in MATLAB to assist data 
collection from Aspen HYSYS (V7.3). This automation code 
works as an interface between both softwares, allowing MATLAB 
to automatically run Aspen HYSYS (V7.3) and collect the 
simulation results. Note that, in practice, the rigorous model needs 
to be validated first with the actual process before being used to 
generate the samples.  

3.2. ANN Structure. The large number of outputs requires 
several neural networks to create the distillation model. To 
facilitate training of the ANNs, the outputs are grouped 
according to their dimensions and order of magnitude. For 
example, output group 1 for ANN1 consists of stream 

temperatures, output group 2 for ANN2 consists of heat 
capacities, etc. These neural networks are structured as feed-
forward networks with two hidden layers. The transfer function 
for the hidden layers is a hyperbolic tangent function, while an 
identity function is used for the output layer.  

The number of neurons in the hidden layers of each network 
is determined by manually growing the network and selecting 
the number of neurons that achieves the desired accuracy. The 
accuracy indicator used in this work to select the number of 

neurons is the coefficient of determination R2.  
Another ANN was built to predict whether a specified set 

of inputs constitute a feasible operating scenario. In this 
work, inputs are deemed to be feasible if they result in 
converged rigorous simulations in Aspen HYSYS (V7.3). 
This feasibility ANN is a feed-forward network with one 
hidden layer and one output layer. The output of this pattern 
recognition network is an integer that has a value of 0 for 
unfeasible inputs, and a value of 1 for feasible inputs. 
Hyperbolic tangent functions are used for the hidden and 
output layers. The number of neurons in the hidden layer was 
also selected by manually growing the network.  

3.3. ANN Training and Validation. Backpropagation training 
is applied in this work to calculate the values of the weights and 
biases that minimize the error between model predictions and 
targets. This training method minimizes eq 3 using an optimization 
algorithm. The ANNs related to the distillation model (i.e., 
networks that calculate variables related to product quality, column 
diameters, and stream information  
for HEN simulation) use the Levenberg−Marquardt algo-rithm48,49 
to minimize eq 3. For the feasibility ANN, the scaled 

 
4991 DOI: 10.1021/ie503802j

 Ind. Eng. Chem. Res. 2015, 54, 4988−5000 



Industrial & Engineering Chemistry Research Article  
 
conjugate gradient algorithm50 is employed to minimize eq 
3. During training, the samples obtained from rigorous 
simulations are randomly divided into three sets. The ratios 
for the training, validation, and testing sets are 0.70, 0.15, 
and 0.15, respectively.  

The goodness of fit of the ANNs of the distillation model is 

assessed with the coefficient of determination R2 and residual 
analysis. The residuals of each output are plotted against their 
targets to identify nonrandom patterns, which may indicate a 
poor regression. The mean and standard deviation of the errors 
between ANN predictions and their targets for each output are 
also calculated to provide quantitative measures of confidence 
intervals. In this work, the absolute error is calculated for the 
temperature-related variables, while the relative error is 
calculated for variables other than temperatures.  

The goodness of fit of the feasibility ANN is assessed with 
a conf usion matrix. This confusion matrix reports the 
number of false positive, false negative, true positive, and 
true negative predictions, which allows a more detailed 
analysis of accuracy of the feasibility ANN.  

3.4. Modeling Temperature-Dependent Heat Capaci-ties. 
Heat integration is achieved in the crude oil distillation system by 
exchanging heat between hot and cold process streams. To obtain a 
reasonable representation of the energy efficiency of the distillation 
process, details of the heat exchanger network need to be taken into 
account. These details include the topology of the network, heat 
loads, heat transfer areas, and heat transfer coefficients of each 
exchange unit, etc. Design and simulation of a detailed HEN also 
requires that at least supply and target temperatures, heat capacities, 
and enthalpies from each process stream are known. The terms 
supply and target temperatures refer to stream temperatures before 
and after passing through the HEN, respectively.  

HEN design approaches typically implement simplifying 
assumptions, such as considering constant thermal properties for all 
process streams. In particular, heat capacity is often assumed 
constant. This assumption is valid when streams do not undergo 
phase changes, considerable temperature changes, or when heat 
capacity is not significantly affected by temperature. However, 
process streams from crude oil distillation experience significant 
temperature variations that affect heat capacity, among other 
properties (e.g., density, viscosity, etc.). For this reason, it is 
necessary to develop a model for calculating heat capacity as a 
function of temperature.  

Three situations occur for process streams exchanging 
heat in the HEN: (a) streams that only exchange sensible heat, 
(b) streams that mostly exchange latent heat, and (c) streams 
that exchange sensible and latent heat. For the crude oil 
distillation system considered in this work, the process 
streams that transfer only sensible heat (a) are the products 
and pump-around streams. It is assumed that phase 
equilibrium is achieved on each stage in the column. Thus, 
the products leave the distillation unit as saturated liquids. 
These products are cooled down to be stored or processed 
downstream. Likewise, pump-around streams are withdrawn 
from the main column as saturated liquids and returned as 
subcooled liquids to an upper stage.  

Streams that absorb heat through experiencing phase change  
(b) are process streams undergoing vaporization in reboilers. 
Similarly, if the outlet of the condenser is specified as a vapor or 
saturated liquid, then this process stream belongs to situation 
(b). In contrast, if the outlet of the condenser is specified as a 
subcooled liquid, then the process stream in the cooler rejects 

 
both latent and sensible heat (c). Crude oil feed belongs to 
situation (c), increasing its temperature from storage temper-
ature to approximately 330−385 °C, depending on crude 
composition. The crude oil is gradually vaporized 
throughout the temperature range before entering the flash 
zone of the main distillation tower.  

Chen4 used multisegmented stream data to represent 
temperature-dependent thermal properties, namely stream 
enthalpy. For each stream, a new segment was generated each 
40 °C and when a phase change took place. Then, a fourth-order 
polynomial was regressed for each stream using the segmented 
stream data. The fourth-order polynomials used by Chen4 
correlated temperature as a function of enthalpy. One of the 
shortcomings of this approach is that the fourth-order 
polynomials are not suitable for representing streams of 
situation (c). Moreover, it is computationally demanding to 
regress the parameters of the fourth-order polynomials each 
time a simulation is run. Another shortcoming of the approach 
of Chen4 is that by using these fourth-order polynomials, the 
HEN energy balance becomes a system of nonlinear equations, 
which needs to be solved sequentially.  

In this work, different heat capacity flow rate models are 
considered for each situation. An understanding of the 
relationship between temperature and enthalpy was gained 
using rigorous simulations to select each type of model (e.g., 
linear, polynomial, etc.). Thus, simple linear heat capacity 
models are developed for streams that exhibit a linear 
dependence with respect to temperature. Similarly, nonlinear 
equations are used for streams that exhibit nonlinear relation-
ships between heat capacity flow rates and temperatures. This 
approach is simpler and more computationally efficient than the 

approach of Chen.4 Moreover, the heat capacity correlations 
developed in this work can be implemented in the HEN energy 
balance without altering its linearity. Thus, the HEN energy 
balance can still be solved as a system of linear equations. Part 
II1 of the series describes how the heat capacity models are 
implemented in the HEN model.  

It was found that a linear equation is adequate to represent 
temperature-dependent heat capacity of products and pump-
around streams (a). For these streams, the ANN distillation 
model provides predictions of supply and target temperatures, 
enthalpy change, and the ratio between heat capacities at supply 
and target temperatures. Thus, the heat capacity flow rate for 
case (a) is calculated using linear interpolation:  

 
CPs( ψ − 1) 

  
CPs( Tt − ψTs)  

 
CP = T +  

Tt − Ts Tt − Ts 

 

    (5)
where Ts and Tt are the supply and target temperatures, 
respectively. CPs is the heat capacity flow rate at the supply 
temperature, ψ is the ratio between heat capacities at supply and 
target temperatures (i.e., ψ = Cpt/Cps), and CP is the heat 
capacity flow rate at a given temperature T. Equation 5 
represents a straight line. CPs is related to the mean heat  
           

capacity CP and total enthalpy change H:  

  
= H = CPs + CPt =CPs(1 + ψ)  

 CP  
 

Tt − Ts 
   

   2   2 (6)
 
where CPt is the heat capacity flow rate at the target temperature, 
H is the stream enthalpy change predicted by the ANN 
distillation model, and CP is the average heat capacity flow rate. 
The value of CPs can also be expressed as   
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Table 1. Input Variables of Atmospheric Distillation Unit    
      

item base case lower bound upper bound  optimized case 

LN flow rate (bbl/h) 465.9 326.1 605.7 498.9 (+7%) 
HN flow rate (bbl/h) 483.6 338.5 628.7 462.6 (−4%) 
LD flow rate (bbl/h) 921.9 645.3 1198.5 922.9 (∼0%) 

HD flow rate (bbl/h) 285.7 200.0 371.4 336.9 (+18%) 
RES flow rate (bbl/h) 2009.6   1945.4 (−3%) 

PA1 duty (MW) 11.20 7.84 14.56 10.06 (−10%) 

PA2 duty (MW) 17.89 12.52 23.26 19.22 (+7%) 
PA3 duty (MW) 12.84 8.99 16.69 16.59 (+29%) 
PA1 temp drop (°C) 20.0 14.0 26.0 24.0 (+20%) 
PA2 temp drop (°C) 50.0 35.0 65.0 54.5 (+9%) 
PA3 temp drop (°C) 30.0 21.0 39.0 30.0 (∼0%) 
HD steam flow rate (kmol/h) 1200.0 840.0 1560.0 1213.0 (+1%) 
RES steam flow rate (kmol/h) 250.0 175.0 325.0 261.8 (+5%) 
coil outlet temp (°C) 365.0 330.0 370.0 366.9 (+2 °C) 

        

 2  H 

CPs =
   

(1 + ψ) (Tt − Ts)   

 
Once the ANNs are regressed and validated, they can be used 

 
 
 
 
 
(7) to simulate the distillation column and to calculate the 
stream heat capacity flow rates. The ANN distillation model, the 
feasibility ANN, and eq 5 to 10 provide all the information from 
the distillation process that is needed for optimization. For details 
on how eq 5 to 10 are implemented in the HEN model, the reader 
is referred to Part II1 of this series. 

          4. CASE STUDY        
   

H  
  The neural network modeling approach developed to enable 

CP* =    operational  optimization  of  the  distillation  column  and 
Tt − Ts 

  

   (8) presented in the previous section is illustrated by a case 

Equation 8 has no physical meaning and is only used to 
study. The distillation system comprises an atmospheric crude 

oil distillation unit and its associated heat exchanger network. 
represent latent heat in a manner that is consistent with the 

However, this case study focuses only on the distillation unit. 
HEN model formulation. H represents the latent heat of 

The case study demonstrates how the distillation model can be 
vaporization and condensation for the reboilers and condenser, 

applied for operational optimization of the distillation column respectively. If the stream is a pure component and only a 
in a simplified study, where the heat exchanger network is not phase change occurs without any change in pressure, then Tt − 
explicitly modeled but heat recovery opportunities areTs = 0 °C . In this case, the temperature needs to be corrected  

estimated using  the  grand  composite curve (GCC). Theto a small value different from zero to avoid undefined CP* 
model is applied for optimization, while the GCC is used in this 

values, for example Tt − Ts = 0.1 °C. 
 

 paper for simplicity. Part III2 uses a detailed model of an
Finally, a polynomial equation was developed for the crude 

existing HEN in the optimization and retrofit of the crude oil 
oil  feed.  This equation predicts  the  relationship between distillation system.        

enthalpy and temperature for the interval [Ts,Tt]. The equation 
       

The atmospheric distillation unit processes 100 000 bbl/day
was regressed using data of enthalpy H measured at different (0.184 m3/s) of crude oil into five products, namely light
temperatures T. The reference enthalpy in eq 9 is the enthalpy 

naphtha, heavy naphtha, light distillate, heavy distillate, and
of the crude oil measured at feed conditions. Aspen HYSYS 

residue. The crude oil mixture is Venezuela Tia Juana Light 
(V7.3) was used to generate such data. It was found that a third crude;6  the  true  boiling point  curve and  properties are
degree polynomial equation provides an accurate representa- presented in Tables S1 and S2 (see Supporting Information). 
tion: 

      

      The initial operating conditions are taken from Chen4 based on 

H = p4 T 3 + p3 T 2 + p2 T + p1 (9) a case study presented by Watkins.6 This information is used in 

where pi  (for i = 1,...,4) are the model parameters found by 
Aspen HYSYS (V7.3) to create a set of pseudocomponents that 
represent the crude oil mixture. The characterization technique 

least-squares regression. Considering constant pressure and embedded in Aspen HYSYS (V7.3) calculates the physical and 
mass flow rate, the heat capacity flow rate can be calculated as thermodynamic  properties  (i.e.,  molecular  weight,  density, 
CP = dH/dT. Differentiation is applied to eq 9 to obtain a viscosity, vapor pressure, enthalpy, etc.) of each pseudocompo- 
pseudo-heat-capacity flow rate that represents both sensible and nent. The normal boiling point, molecular weight, density, and 
latent heat:       liquid volume composition of these pseudocomponents are 

 presented in Table S3 (see Supporting Information).  

 
Equation 5 is a simple, yet suitable representation of the 
relationship between heat capacity flow rate and temperature, and 
applies to distillation products and pump-around streams. 

For the reboilers and condenser (where the outlet of the 
latter specified as a saturated liquid), a pseudo-heat-capacity 
flow rate CP∗ is introduced to represent latent heat in terms of 
sensible heat: 



CP* = p4 T 2 + p3 T + p  The atmospheric distillation unit is structured as a main   

3  2  2 (10) column with three side strippers and three pump-arounds, as in    
          

In summary, the ANN modeling approach starts by setting Figure 1. Steam is used as a stripping agent for the main 
up a rigorous simulation, from which the samples are obtained. column and HD stripper, while reboiling is employed for the 
The samples are used to regress the parameters of the ANNs. HN and LD strippers. The stage distribution of the distillation 
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unit and initial operating conditions are based on an optimized 

design presented by Chen.4 Table 1 and Table S4 (see 
Supporting Information) show the initial operating conditions 
and the structure of the distillation unit, respectively. The reflux 
ratio in the main distillation column at the initial operating 
conditions is 4.57. Operating pressure is 2.5 bar. Product flow 
rates in Table 1 are reported as ideal liquid flow rates at standard 
conditions (15 °C and 1 atm) on a water-free basis. Table S8 
(see Supporting Information) presents the flooding conditions 
for the crude oil distillation unit at the initial operating 
conditions. These flooding conditions are calculated using the 
tray sizing utility in Aspen HYSYS (V7.3), with the default 
parameters for sieve trays.  

4.1. Distillation Model. A rigorous simulation was set up 
in Aspen HYSYS (V7.3) using the information from the 
crude oil assay and the structure of the distillation unit. A 
total of 3000 sample points were obtained using the LHS 
technique. The lower and upper bounds for each independent 
variable are presented in Table 1. These sample points were 
simulated in Aspen HYSYS (V7.3) using the automation 
program developed in MATLAB. From the 3000 simulated 
scenarios, 2845 converged.  

The results of the converged simulations were used to train 
the ANNs related to the distillation process information, while 
all 3000 sample points were used to train the feasibility ANN. 
The architecture of each neural network and the description of 
their inputs and outputs are presented in Tables S5 to S7 (see 
Supporting Information). Data collection was the most time-
consuming step of the ANN model development, compared to 
the data processing, model selection, regression, and validation 
steps. Data collection involved setting up the rigorous 
simulation in Aspen HYSYS (V7.3), developing the automation 
program, and carrying out multiple rigorous simulations to 
obtain the samples. On average, each simulation took 0.5 s 
using a computer with an Intel Core processor of 3.40 GHz and 
8.00 GB of installed RAM.  

The coefficients for eq 9 and 10 were calculated using 
least-squares regression and results from calculating crude 
oil feed enthalpy over a suitable range of temperatures: 
 

H = − 1.1402 × 10− 6 T 3 + 1.1194 × 10− 3T 2 + 0.1778T  
− 4.1333 (11) 

 
The reference enthalpy is the enthalpy of crude oil at feed 
conditions, that is, 25 °C and 2.5 bar. Figure 3 compares the 
regressed enthalpies and the enthalpies calculated with 
Aspen HYSYS (V7.3), showing good agreement.  

4.2. Model Validation. The first validation of the ANNs was 
performed by the ANN Toolbox in MATLAB after training. 
Randomly selected points (15% of the total number of samples 
initially provided, i.e., results of converged simulations) 
comprised the validation set used in this case.  

To gain more confidence of the ANN model, a second validation 
was carried out using a new set of data from rigorous simulations. 
This new data set was used to calculate the coefficient of 

determination R2, the error and standard deviation σ of the error. 
The residual was calculated for temperature-related variables, while 
the relative error was calculated for variables other than 
temperature. LHS was used to obtain 1000 new data points, of 
which 955 simulations converged in Aspen HYSYS (V7.3). The 
lower and upper bounds in Table 1 were used to generate the LHS 

samples. Table 2 shows the values of R2, the error and standard 
deviation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Enthalpy−temperature relationship of crude oil.  

 
for each output of the neural networks. Results from 
validating the feasibility ANN are shown in Figure 4.  

For temperature-related variables, the coefficient of determi-
nation was at least 0.97, the residual no greater than 0.22 °C and 
the standard deviation up to 3.6 °C. The maximum error and 
standard deviation of the error was found for the T95% 
temperature of HD stream. For this variable, the mean of the 
residual equals 0.22 °C and the standard deviation equals 
3.63 °C. The T5% temperature of HN stream presented the 

lowest value of the coefficient of determination (R2 = 0.97). The 
standard deviation represents data variability, while the 
coefficient of determination is an indicator of goodness of fit. A 
good fit should show low values for the standard deviation and 
values for the coefficient of determination close to 1. The 
confidence interval for the mean error of the T95% temperature 
predictions of the HD stream was calculated. This variable 
showed the greatest standard deviation for temperature-related 
variables, thus its confidence interval is also the greatest among 
these variables. The calculated confidence interval is ±0.3 °C 
from the mean error, using a 99% confidence level.  

For variables other than temperatures, the coefficient of 
determination was at least 0.99, the mean error no greater than 
0.23%, and the standard deviation up to 2.71%. The maximum error 
corresponds to flooding condition predictions for stages 25 to 32 of 
the main column. For this variable, the mean of the relative error 
and standard deviation of the error equal −0.23% and 0.80%, 
respectively. The maximum standard deviation corresponds to 
enthalpy change predictions for the LN stream. For this variable, 
the mean of the relative error and standard deviation of the error 
equal 0.15% and 2.71%, respectively. The coefficient of 
determination for variables other than temper-atures is equal or 
greater than 0.99. The confidence interval for the mean error of the 
enthalpy change predictions of the LN stream was calculated. The 
calculated confidence interval is  
±0.2% from the mean error, using a 99% confidence level. 
Results presented in Table 2 show that predictions from the 
neural networks are in very good agreement with results 
from rigorous models.  

The feasibility ANN was validated using a confusion matrix, as 
shown in Figure 4. The output of this ANN is an integer equal to 1 
in case inputs lead to a converged simulation in 
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Table 2. Coefficient of Determination, Error, and Standard Deviation of the Error for Outputs of the Neural Networks  

variable R2 T
 
−

 
T

calc σ(T − Tcalc) variable R2 error % σ(error%) 
T5% (°C)    Column flooding %    
LN 0.99 0.00 0.17 column stages 1−5 1.00 0.01 0.83 
HN 0.99 −0.02 1.23 column stages 6−14 1.00 0.08 1.02 
LD 0.99 −0.13 1.88 column stages 15−24 1.00 0.00 0.77 
HD 0.99 −0.09 2.15 column stages 25−32 1.00 −0.23 0.80 
RES 1.00 −0.04 1.38 column stages 33−41 1.00 −0.08 0.81 
T95% (°C)    HD stripper 0.99 −0.01 1.64 
LN 0.99 0.02 1.57 LD stripper 1.00 0.00 0.87 
HN 0.97 −0.15 3.12 HN stripper 1.00 −0.05 1.04 
LD 0.99 0.05 2.51 Enthalpy change    
HD 0.99 0.22 3.63 HN reboiler 1.00 0.05 0.86 
RES 1.00 0.03 0.57 LD reboiler 1.00 0.05 0.66 
Supply temp (°C)    condenser 1.00 0.01 0.80 
HN reboiler 0.99 −0.03 1.14 LN 0.99 0.15 2.71 
LD reboiler 1.00 −0.01 1.08 HN 1.00 −0.03 1.40 
condenser 0.98 0.10 1.10 LD 1.00 −0.03 0.63 

PA1 0.99 −0.04 0.93 HD 1.00 −0.01 1.04 
PA2 1.00 0.01 0.84 RES 1.00 0.00 0.18 

PA3 1.00 0.04 0.59 Heat capacity ratio ψ    
LN 0.99 0.00 0.29 PA1 1.00 0.00 0.04 
HN 0.99 −0.03 1.09 PA2 1.00 0.01 0.04 

LD 1.00 −0.02 1.02 PA3 1.00 0.00 0.04 
HD 1.00 0.00 0.90 LN 0.99 0.00 0.07 
RES 1.00 −0.01 0.50 HN 0.99 0.00 0.21 
Target temp (°C)    LD 0.99 0.00 0.17 

HN reboiler 0.99 −0.03 1.09 HD 0.99 −0.02 0.16 
LD reboiler 1.00 −0.02 1.02 RES 0.99 0.01 0.11 
condenser 0.99 0.00 0.29     

        

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Confusion matrix for the feasibility ANN: no shading, 
correct predictions; light shading, incorrect predictions; double 
shading, summary of results.  
 

 
Aspen HYSYS (V7.3). Otherwise, a value of zero is allocated. 
Values in boxes with no shading indicate the number and 
percentage of correct predictions. The values in boxes with light 
shading indicate incorrect predictions. The boxes in double shading 
summarize results for these predictions. It can be seen that 95.5% 
of predictions were correct, with 3.6% false positive predictions 
and 0.9% false negative predictions. From these two types of false 
predictions, false positive ones are the least desirable. A false 
positive prediction will allow unfeasible inputs to be considered by 
the algorithm used to optimize the operating conditions of the 
distillation column, which can lead to unrealistic results. On the 
contrary, a false negative prediction will make the optimization 
algorithm reject a set 

 
of feasible inputs, which decreases the number of available 
design options.  

Computation times to simulate the distillation process using 
rigorous models in Aspen HYSYS (V7.3) and the ANN model 
built in MATLAB were compared. The computer used in this 
work has an Intel Core processor of 3.40 GHz and 8.00 GB of 
RAM. The maximum number of iterations for the solver 
embedded in Aspen HYSYS (V7.3) was changed to 20. The rest 
of the solver settings were kept to their default values. One 
hundred samples were generated using the LHS technique. 
These sample points were simulated with both distillation 
models. Total computation time for the ANN model was 1 s. 
Total computation time for rigorous models in Aspen HYSYS 
(V7.3) was 182 s; the exchange of information with MATLAB 
took another 4 s. From these results it is evident that 
computation times are significantly greater when using rigorous 
models. Furthermore, the convergence rate of rigorous models 
was 95%, compared to a 100% convergence rate of the ANN 
model. In the context of process optimization, where many 
thousands of simulations may be carried out, the advantages of 
the ANN model would be even greater. The ANN model is 
considerably more computationally efficient than rigorous 
models. Moreover, the validation tests proved that results from 
the ANN model are in very good agreement with results from 
rigorous models. 

4.3. Optimization Considering Minimum Energy 
Requirements. The ANN distillation model, the feasibility 
ANN and eq 5 to 11 are implemented in an optimization 
framework to improve profit. The grand composite curve is used 
in this case study to calculate minimum energy requirements. 
Specifically, the requirements for fired heating 
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and cooling water. The consideration of a detailed HEN 
model to calculate energy requirements is presented in Parts 
II1 and III2 of the series.  

The objective function for optimization can be expressed 
mathematically as 

N
prod 

N
stm 

min
 
f
 
= −

 
∑

 
C

prod, i
F

prod, i 
+

 
C

crude
F

crude 
+

  
∑

 
C

stm, j
F

stm,j

i= 1 j= 1 
N

util 

+ ∑
 
C

util, k 
U

min,k
 

k= 1 (12)

 

T lb ≤T ≤ T ub k = 1, 2, 3 
(16)PAk PA k PAk  

COT lb ≤ COT ≤ COTub  (17)

T5i
lb ≤ T 5i ≤ T 5i

ub i = 1, 2, ..., Nprod (18)

T95i
lb ≤ T 95i ≤ T 95i

ub i = 1, 2, ..., Nprod (19)
 

Flooding m ≤ Flooding m
ub   m = 1, 2, ..., Nsections (20)

α = 1 (21)

where C and F refer to prices and flow rates, respectively. 
where QPA and  TPA denote the duty and temperature drop for 

pump-around k, COT is the coil outlet temperature; T5 and 
Subscripts prod, crude, stm, and util refer to the product 

T95 indicate the T5% and T95% true boiling point (TBP) 
streams, crude oil, stripping steam, and utilities, respectively. 

temperatures for product i; “Flooding” refers to the flooding 
Nprod is the total number of distillation products; Nstm is the 

percentage for sections of the main column and strippers; and α 
number of steam streams (i.e., stripping steam in the main 

is the output of the feasibility ANN. Superscripts lb and ub 
column and HD stripper); and Nutil  is the total number of 

indicate the specified lower and upper bounds of the variables, 
utilities (i.e., cooling water and fired heating). U

min is the respectively.    

minimum requirement of utility k, calculated from the grand    

For flooding calculations within Aspen HYSYS (V7.3), thecomposite curve. The product unit prices used in this case 
main distillation column is divided into five sections as shown study are based on the crude oil price of 201051 and calculated 
in Table 2, while only one section is considered per stripper. using the procedure presented by Maples.52  Unit prices of 
The maximum flooding condition considered for all sections 

stripping steam and utilities are taken from Chen.4 Capital costs and strippers is 85%.    

to retrofit the HEN are not included in eq 12, but they are    

The lower and upper bounds of the optimization variables
considered in Parts II1 and III2 of the series. Table 3 presents 

(eq 13 to 17) are parameters of the optimization algorithm, and 
the unit prices of crude oil, products, steam, and utilities used in are chosen by the designer. Constraints in eq 18 to 21 are
eq 12.              

             included in the objective function as penalty functions. Thus,               
              

the objective function in eq 12 is adapted to the form: 
Table 3. Prices of Crude Oil, Distillation Products, Utilities  n    

and Stripping Steam 
              

          min F (x) = f ( x) + γ1| h(x) | + ∑ γ1+ j max(0, gj(x ))               

  item    price  units    j= 1   (22)
crude oil      79.6  $/bbl   

h(x) = 0 
   

LN       103.5  $/bbl      
              

HN       92.7  $/bbl   
gj( x ) ≤ 0 

   
LD       99.0  $/bbl      

              

HD       96.6  $/bbl   where x are the optimization variables (i.e., Fprod, 
F

stm
,
 
Q

PA
,

RES 
      

61.3 
 

$/bbl 
  

         TPA, and COT); F(x) is the unconstrained objective function;
fired heating (1500−800 °C) 

   

150.0 
 

$/kWy 
  

      f(x) is the constrained objective function (eq 12); h(x) is the
cooling water (10−40 °C) 

    

5.25 
 

$/kWy 
  

       equality constraint of eq 21; gj(x) are the inequality constraints 
stripping steam (260 °C, 4.5 bar) 

  

0.14 

 

$/kmol 

  

     (eq 18 to 20); and γ are penalty factors that ensure that 
              constraints are scaled and given the corresponding importance 

4.3.1. Process Constraints. Process constraints are employed 
during optimization. The values for  the lower and upper

bounds of the optimization variables are shown in Table 1. The 
to make sure that solutions are practicable and sensible. The 

values of the T5% and T95% TBP temperatures are allowed to 
objective  function  for  optimization  described in eq 12 is 

vary ±10 °C from the base case conditions to maintain product 
subjected to constraints on the optimization variables, product 

quality. Variables related to product quality are presented in 
quality, and column flooding. Column flooding is calculated Table 4.    

using the tray sizing utility in Aspen HYSYS (V7.3), with the 
   

4.3.2. Calculation of Minimum Energy Requirements. The
default parameters for sieve trays.        

       

distillation system in this case study comprises three cold
An  additional constraint is used to  exclude  operating

process streams (i.e., crude oil, LD, and HN reboiler streams) 
conditions  that are  unfeasible. This feasibility constraint 

and nine hot process streams (i.e., pump-arounds, condenser, 
employs the output of the feasibility ANN, which is equal to 

and distillation product streams). Cooling water and fired
1 for inputs that lead to converged simulations in Aspen 



HYSYS (V7.3). The constraints considered for the distillation 
heating are used as cold and hot utilities, respectively. The 
values of supply and target temperatures (Ts, Tt), enthalpy

unit can be expressed as follows: 
        

        change (  H), and CP ratio (ψ) for the base case conditions are 
Fprod,

lb i 
≤

 
F

prod, i ≤ Fprod,
ub

i 
 

i = 1, 2, ..., Nprod − 1 
    

  (13) presented in Table S9 (see Supporting Information). 
              Stream information in Supporting Information, Table S9 is

lb   ub 

j = 1, 2 
    

(14)
 used in eq 5 and 7 to model heat capacity flow rate as a 

F
stm,j 

≤
 
F

stm, j 
≤

 
F

stm,j      function of temperature for the pump-around and product 
              

lb   ub 
k = 1, 2, 3 

      streams. Stream information in Table S9 is also employed in eq 
Q

 PAk 
≤

 
Q

 PA k  
≤

 
Q

 PAk    (15) 
8 to calculate the pseudo-heat-capacity 

fl  
               ow rate (CP*) for the 
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Table 4. Product Quality Results 
 
  lower upper   

item base case bound bound optimized case

LN T5% (°C) 6 −4 16 6 (+1)
HN T5% (°C) 102 92 112 107 (+5)
LD T5% (°C) 174 164 184 176 (+2)
HD T5% (°C) 289 279 299 290 (+1)
RES T5% (°C) 358 348 368 366 (+8)
LN T95% (°C) 111 101 121 112 (+1)
HN T95% (°C) 187 177 197 189 (+1)
LD T95% (°C) 312 302 322 313 (+1)
HD T95% (°C) 363 353 373 366 (+3)
RES T95% (°C) 889 879 899 894 (+5)

       
 
condenser and reboiler streams. Finally, eq 11 is used to 
calculate the pseudo-heat-capacity flow rate for the crude oil 
feed.  

Figure 5 shows the GCC for the heat-integrated system 
considering (a) constant thermal properties, and (b) temper-
ature-dependent thermal properties (eq 5 to eq 11). The 
minimum approach temperature is 25 °C. Hot and cold utility 
requirements for case (a) are 41.89 MW and 47.33 MW, 
respectively. For case (b), hot and cold utility requirements are 
51.53 MW and 57.97 MW. These results show that utility 
requirements are very different in the two cases. For these 
operating conditions, hot and cold utility requirements are 
underestimated by over 18% when thermal properties are 

assumed constant. The work of Chen4 shows that it is just as 
important to consider the temperature dependence of thermal 
properties when taking into account the details of the HEN. 

Chen4 compared the results of simulating a HEN with and 
without considering temperature-dependent heat capacities. 
The comparison showed that the calculated HEN temperatures 
assuming constant heat capacities were underestimated by up to 
27 °C. Thus, it is very important to consider the temperature 
dependence of thermal properties to obtain meaningful 
estimations of energy requirements and temperatures.  

4.3.3. Optimization Framework. The optimization frame-
work employed in this case study is illustrated in Figure 6.  

 
Starting with a distillation unit with feasible operating 
conditions, the optimization algorithm calculates the values of  
Fprod, Fstm, QPA, TPA and COT that increase profits. Profit 
improvement can be achieved by increasing the flow rates of  
the most valuable products (i.e., LN, LD, and HD), 
decreasing steam flow rates and/or decreasing utility 
consumption, especially that of fired heating.  

For each iteration of the optimization algorithm, the distillation 
process is simulated using neural networks. Then, stream 

information (i.e., Ts, Tt, H and ψ) is passed to the heat recovery 
model. In this case study, the heat recovery model is the grand 
composite curve. The GCC provides minimum utility requirements 
considering temperature-dependent thermal properties. Results 
from simulating the distillation column and the GCC are used to 
calculate the objective function in eq 12 and penalty functions for 
constraints in eq 18 to eq 21.  

Simulated annealing is used as the optimization algorithm. 
Function simulannealbnd embedded in the Global Optimization 
Toolbox in MATLAB is employed in this case study. The 
parameters of the SA algorithm were kept to their default values 
except for the TolFun (i.e., function tolerance) and TimeLimit 
(i.e., time limit) parameters, which were selected by trial and 
error and by taking into account the order of magnitude of the 
objective function. The function tolerance was set to 10, while 
the time limit was set to 5 min.  

4.3.4. Optimization Results. The optimized variables are 
presented in Table 1. The optimized calculated reflux ratio is 
4.57, where the initial value was also 4.57. A summary of 
optimization results is presented in Table 5. Table S10 (see 
Supporting Information) shows stream information used to 
calculate minimum energy requirements. The GCC at the 
optimized conditions is illustrated in Figure 7. Table S8 (see 
Supporting Information) presents the flooding conditions for the 
crude oil distillation unit at optimized operating conditions.  

The optimization algorithm was run 10 times to obtain a 
range of solutions, from which the best was chosen. A total of 
1299 function evaluations were carried out for the best solution 
found. The new operating conditions were validated in Aspen 
HYSYS (V7.3), showing good agreement.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Grand composite curves for base case conditions considering: (a) constant thermal properties and (b) temperature-dependent 
thermal properties. 
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Figure 6. Optimization framework.  
 
Table 5. Optimization Results for the Crude Oil Distillation 
System 
 

item base case optimized case 

Summary of utility consumption and operating costs  
hot utility (MW) 51.5 48.2 (−6%) 
cold utility (MW) 58.0 55.1 (−5%) 

utility costs (M$/y)a 8.0 7.5 (−6%) 
steam cost (M$/y) 1.7 1.8 (+2%) 
crude oil cost (M$/y) 2852.3 2852.3  
operating cost (M$/y) 2862.1 2861.6 (∼0%) 

Product income and profit    
product income (M$/y) 2881.9 2904.0 (+1%) 
profit (M$/y) 19.8 42.4 (+22.6 M$/y)  

aM$ denotes millions of dollars.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Grand composite curve for optimized conditions 
considering temperature-dependent thermal properties.  
 

The product income for the optimized operating conditions is 
2904.0 M$/y (millions of US$ per year), which represents an 
increase of 22.1 M$/y (∼1%) from the base case. The flow rates 
of the most valuable distillation products (LN, LD, and 

 
HD) are increased at the expense of the least valuable ones 
(HN and RES). Minimum hot and cold utility consumption 
is decreased by 3.3 MW and 2.9 MW, respectively. For this 
case study, results indicate that product income has a 
dominant effect in process economics. Utility costs together 
amount to less than 1% of product revenue. Even though 
utility costs are marginal, the optimizer was able to reduce 
these operating costs by around 6% while achieving 
considerable improvements in product revenue.  

Table 4 shows T5% and T95% TBP temperatures for the 
optimized operating conditions; these results confirm that product 
quality is within specified ranges. As the flow rates of the lightest 
components increase, more heavy material is moved from the 
bottom stages to the upper part of the column; as a consequence, 
temperatures in the column increase. The increased temperatures of 
the product streams allow more useful heat from the column to be 
transferred to the preheat train. On the other hand, if the flow rates 
of the top products are diminished, the temperatures of all 
distillation products decrease, thus available energy for heating 
exists at a lower temperature. This energy at a lower temperature is 
less useful for preheating the crude oil feed. Therefore, more fuel 
needs to be supplied to the furnace, and the hot utility demand 
increases.  

Results from Tables 1, 4, and 5 should be treated with caution. 
Although the new operating conditions of the distillation system 
meet the constraints; that is, a mathemati-cally feasible solution 
is found, there is no guarantee that the new operating conditions 
are feasible in practice. A key reason for this caution is the lack 
of consideration of HEN details in the optimization problem. 
The new set of operating conditions presents considerable 

changes in flow rates (e.g., HD and PA3) and cooling and 
heating requirements that may not be achievable in the existing 
HEN. Other factors such as the capacity of the column internals 
(e.g., downcomers, distrib-utors, nozzles), pumps and furnace 
have not been taken into account in the optimization problem. 
One strategy to increase the chances of obtaining practicable 
results using this simple optimization strategy is to restrict the 
values of the optimization variables to relatively small ranges. 
This reduced range would lead to results with less significant 
perturbations to the system, but could also limit the 

improvements that could be achieved. Part III2 of this series 
includes a detailed HEN model into the optimization problem. 

 
4998 DOI: 10.1021/ie503802j

 Ind. Eng. Chem. Res. 2015, 54, 4988−5000 



Industrial & Engineering Chemistry Research Article  
 
5. CONCLUSIONS 
 
Design and optimization of heat-integrated crude oil 
distillation systems is a complex task. The challenge lies not 
only in developing optimization frameworks that consider 
both the distillation process and heat recovery network 
simultaneously, but also in developing models that are 
accurate and computationally efficient for these purposes. 
Detailed distil-lation models have been developed for 
applications that do not consider interactions between the 
distillation unit and heat exchanger network. However, these 
models are computation-ally demanding and often present 
convergence problems that make them unsuitable for 
optimization of heat-integrated systems.  

This paper presents a new methodology to model crude oil 
distillation processes in the context of the heat recovery system. 
This modeling approach employs artificial neural networks to 
regress the variables that describe the separation and energy 
performance of the distillation process. Results from rigorous 
simulations are used to train the ANNs. The independent 
variables (inputs of the ANN model) are the operating 
conditions of the distillation process, namely flow rates of 
products and stripping steam, pump-around duties, and 
temperature drops and coil outlet temperature. The dependent 
variables (outputs of the ANN distillation model) are variables 
related to product quality (i.e., T5% and T95% TBP 
temperatures), flooding conditions, and stream information to 
calculate energy requirements. This stream information consists 
of supply and target temperatures, enthalpies, and heat capacity 
variation of process streams passing through the heat exchanger 
network.  

Predictions from the ANN distillation model and rigorous 
models are compared and shown to be in good agreement. The 
resulting ANN distillation model is demonstrated to be accurate 
and significantly faster in convergence than rigorous models. 
ANN models do not require the specification of initial guesses 
or complex solution algorithms that rigorous models do, since 
ANN models have simpler formulations and are more robust. 
These characteristics make the ANN distillation model suitable 
for implementation in optimization strategies, as illustrated in a 
case study presented in this paper. A comparison between 
minimum energy requirements assuming constant and 
temperature-dependent thermal properties is made. As expected, 
minimum energy requirements were significantly 
underestimated when thermal properties are assumed constant. 

Part III2 of this series implements the distillation models 
presented in this paper and the HEN models presented in Part 

II1 to optimize the overall heat-integrated crude oil distillation 
system.  

The proposed distillation modeling strategy can be extended 
to include plant measurements to train the neural networks or to 
include different distillation variables to the ones selected in this 
work. Future work includes developing ANN distillation 
models that consider structural variables of the distillation unit, 
such as feed or pump-around location; or additional variables, 
such as crude oil blending ratio. 
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